Agrawal, A. A.: Induced responses to herbivory and increased plant performance, Science, 279, 1201–1202, https://doi.org/10.1126/science.279.5354.1201, 1998.
Agrawal, A. A.: Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness, Ecology, 80, 1713–1723, https://doi.org/10.1890/0012-9658(1999)080[1713:IRTHIW]2.0.CO;2, 1999.
Agrawal, A. A.: Specificity of induced resistance in wild radish: causes and consequences for two specialist and two generalist caterpillars, Oikos, 89, 493–500, https://doi.org/10.1034/j.1600-0706.2000.890308.x, 2000.
Agrawal, A. A.: Transgenerational consequences of plant responses to herbivory: an adaptive maternal effect?, Am. Nat., 157, 555–569, 2001.
Agrawal, A. A.: Herbivory and maternal effects: mechanisms and consequences of transgenerational induced plant resistance, Ecology, 83, 3408–3415, https://doi.org/10.1890/0012-9658(2002)083[3408:HAMEMA]2.0.CO;2, 2002.
Agrawal, A. A. and Kurashige, N. S.: A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae, J. Chem. Ecol., 29, 1403–1415, https://doi.org/10.1023/A:1024265420375, 2003.
Agrawal, A. A., Laforsch, C., and Tollrian, R.: Transgenerational induction of defences in animals and plants, Nature, 401, 60–63, https://doi.org/10.1038/43425, 1999a.
Agrawal, A. A., Strauss, S. Y., and Stout, M. J.: Costs of induced responses and tolerance to herbivory in male and female fitness components of wild radish, Evolution, 53, 1093–1104, 1999b.
Ali, J. G. and Agrawal, A. A.: Specialist versus generalist insect herbivores and plant defense, Trends Plant Sci., 17, 293–302, https://doi.org/10.1016/J.TPLANTS.2012.02.006, 2012.
Bonduriansky, R., Crean, A. J., and Day, T.: The implications of nongenetic inheritance for evolution in changing environments, Evol. Appl., 5, 192–201, https://doi.org/10.1111/j.1752-4571.2011.00213.x, 2012.
Bossdorf, O., Schröder, S., Prati, D., and Auge, H.: Palatability and tolerance to simulated herbivory in native and introduced populations of Alliaria petiolata (Brassicaceae), Am. J. Bot., 91, 856–862, https://doi.org/10.3732/ajb.91.6.856, 2004.
Bossdorf, O., Richards, C. L., and Pigliucci, M.: Epigenetics for ecologists, Ecol. Lett., 11, 106–115, https://doi.org/10.1111/j.1461-0248.2007.01130.x, 2008.
Brian Traw, M. and Dawson, T. E.: Reduced performance of two specialist herbivores (Lepidoptera: Pieridae, Coleoptera: Chrysomelidae) on new leaves of damaged black mustard plants, Environ. Entomol., 31, 714–722, https://doi.org/10.1603/0046-225X-31.4.714, 2002.
Cipollini, D., Purrington, C. B., and Bergelson, J.: Costs of induced responses in plants, Basic Appl. Ecol., 4, 79–89, https://doi.org/10.1078/1439-1791-00134, 2003.
Cornell, H. V. and Hawkins, B. A.: Herbivore responses to plant secondary compounds: a test of phytochemical coevolution theory, Am. Nat., 161, 507–522, 2003.
Dirzo, R.: Experimental studies on slug-plant interactions: The acceptability of thirty plant species to the slug Agriolimax caruaneae, J. Ecol., 68, 981–998, 1980.
Ehrlich, P. R. and Raven, P. H.: Butterflies and plants: a study in coevolution, Evolution, 18, 586–608, 1964.
Galloway, L. F. and Etterson, J. R.: Transgenerational plasticity is adaptive in the wild, Science, 318, 1134–1136, https://doi.org/10.1126/science.1148766, 2007.
Harvell, D. C.: The ecology and evolution of inducible defenses, Q. Rev. Biol., 65, 323–340, 1990.
Heil, M.: Fitness costs of induced resistance: emerging experimental support for a slippery concept, Trends Plant Sci., 7, 61–67, https://doi.org/10.1016/S1360-1385(01)02186-0, 2002.
Heil, M.: Indirect defence via tritrophic interactions, New Phytol., 178, 41–61, https://doi.org/10.1111/j.1469-8137.2007.02330.x, 2008.
Holeski, L. M., Jander, G., and Agrawal, A. A.: Transgenerational defense induction and epigenetic inheritance in plants, Trends Ecol. Evol., 27, 618–626, https://doi.org/10.1016/j.tree.2012.07.011, 2012.
Holm, L.: World Weeds: Natural Histories and Distribution, John Wiley and Sons, New York, New York, USA, 1997.
Jablonka, E. and Lamb, M. J.: Epigenetic inheritance in evolution, J. Evolution. Biol., 11, 159–183, https://doi.org/10.1046/j.1420-9101.1998.11020159.x, 1998.
Karban, R. and Nagasaka, K.: Are defenses of wild radish populations well matched with variability and predictability of herbivory?, Evol. Ecol., 18, 283–301, https://doi.org/10.1023/B:EVEC.0000035063.70344.03, 2004.
Karban, R., Agrawal, A. A., Thaler, J. S., and Adler, L. S.: Induced plant responses and information content about risk of herbivory, Trends Ecol. Evol., 14, 443–447, https://doi.org/10.1016/S0169-5347(99)01678-X, 1999.
Meijden, E.: Plant defence, an evolutionary dilemma: contrasting effects of (specialist and generalist) herbivores and natural enemies, Entomol. Exp. Appl., 80, 307–310, https://doi.org/10.1111/j.1570-7458.1996.tb00941.x, 1996.
Neylan, I., Sobral, M., and Dirzo, R.: Transgenerational induction of wild radish palatability trials results, https://doi.org/10.6084/m9.figshare.5956666.v1, 2018.
O'Neal, M. E., Landis, D. A., and Isaacs R.: An inexpensive, accurate method for measuring leaf area and defoliation through digital image analysis, J. Econ. Entomol., 95, 1190–1194, https://doi.org/10.1603/0022-0493-95.6.1190, 2002.
Poelman, E. H., Galiart, R. J. F. H., Raaijmakers, C. E., van Loon, J. J. A., and van Dam, N. M.: Performance of specialist and generalist herbivores feeding on cabbage cultivars is not explained by glucosinolate profiles, Entomol. Exp. Appl., 127, 218–228, https://doi.org/10.1111/j.1570-7458.2008.00700.x, 2008.
Rasmann, S., De Vos, M., Casteel, C. L., Tian, D., Halitschke, R., Sun, J. Y., Agrawal, A. A., Felton, G. W., and Jander, G.: Herbivory in the previous generation primes plants for enhanced insect resistance, Plant Physiol., 158, 854–863, https://doi.org/10.1104/pp.111.187831, 2012.
Reymond, P., Weber, H., Damond, M., Farmer, E. E., Dicke, M., and Farmer, E. E.: Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis, The Plant Cell Online, 12, 707–720, https://doi.org/10.1105/tpc.12.5.707, 2000.
Richards, E. J.: Inherited epigenetic variation–revisiting soft inheritance, Nat. Rev. Genet., 7, 395–401, https://doi.org/10.1038/nrg1834, 2006.
Simms, E. L. and Rausher, M. D.: Costs and benefits of plant resistance to herbivory, Am. Nat., 130, 570–581, 1987.
Strauss, S. Y. and Agrawal, A. A.: The ecology and evolution of plant tolerance to herbivory, Trends Ecol. Evol., 14, 179–185, https://doi.org/10.1016/S0169-5347(98)01576-6, 1999.
Takeda, S. and Paszkowski, J.: DNA methylation and epigenetic inheritance during plant gametogenesis, Chromosoma, 115, 27–35, https://doi.org/10.1007/s00412-005-0031-7, 2006.
Thompson, J. N. and Burdon, J. J.: Gene-for-gene coevolution between plants and parasites, Nature, 360, 121–125, https://doi.org/10.1038/360121a0, 1992.
Uller, T.: Developmental plasticity and the evolution of parental effects, Trends Ecol. Evol., 23, 432–438, https://doi.org/10.1016/j.tree.2008.04.005, 2008.
Verhoeven, K. J. F., Jansen, J. J., van Dijk, P. J., and Biere, A.: Stress-induced DNA methylation changes and their heritability in asexual dandelions, New Phytol., 185, 1108–18, https://doi.org/10.1111/j.1469-8137.2009.03121.x, 2010.
Zangerl, A. R.: Evolution of induced plant responses to herbivores, Basic Appl. Ecol., 4, 91–103, https://doi.org/10.1078/1439-1791-00135, 2003.